

CERES Science Team Meeting Livermore, CA – October 4-6, 2011

ScaRaB on Megha-Tropiques

Olivier Chomette
Patrick Raberanto
Nicolas Gif
Michel Capderou
Rémy Roca

Outline

- ScaRaB on Megha-Tropiques
- ScaRaB products
- ScaRaB calibration/validation status

The ScaRaB instrument

Calibration module

22 kg, 52 cm width, 40 watts 4 telescopes (in red)

- 2 main channels (# 2 & 3, broad band)
- 2 auxiliary channels (# 1 & 4 narrow band)
- Cross track scanning (2300 km swath)
- 40 km resolution at nadir

<u>ScaRaB goal</u>: To determine the longwave and shortwave outgoing fluxes observations at the TOA.

Channel	Description	Spectral Interval	Filter
1	VIS (visible)	0.55 – 0.65 μm	Interferential
2	SW (or solar)	0.2 – 4 μm	Silice filter
3	T (total)	0.2 – 100 μm	No filter
4	IR (Infrared)	10.5 – 12.5 μm	Interferential

$$L_{LW (daytime)} = L_{TOTAL} - A' \times L_{SW}$$

A' depends on the spectral response of T and SW channels

ScaRaB products

ScaRaB products – level 2B

Exemple: LW Flux

Synthetic ScaRaB orbit from GERB data

22/06/2006 - 12h

Level 2B:

Instantaneous fluxes over a 1°x1° geographical grid

ScaRaB - Orbit

High temporal sampling

ScaRaB - Orbit

Megha-Tropiques precession cycle: 51 days

More than 4 measurements per day (08-16h LMT)

ScaRaB mean fluxes

LW Flux

Means over 51 days (21/06/2006 – 10/08/2006)

GERB vs ScaRaB

ScaRaB mean fluxes

SW Flux

Means over 51 days (21/06/2006 – 10/08/2006)

GERB vs ScaRaB

ScaRaB mean fluxes

LW Flux 02/07/2006

Blue : Resurs Red : MT

Black : GERB

11.25°N - 23.75°E

Blue : Resurs

Red: MT

Black: GERB

11.25°N - 23.75°E

LW Flux 30/07/2006

Possible ScaRaB/others Comparisons

 Radiances comparisons of simultaneous co-located and co-angular observations

SW radiances

Co-angular ($\theta_{\text{zenith}} \pm 5^{\circ} \& \theta_{\text{azimuth}} \pm 10^{\circ}$ or conical aperture < 5°)

Simultaneous ($\Delta T \pm 7.5 \text{ mn}$)

LW radiances

Same as SW without the $\theta_{azimuth}$ constraint

- More comparisons!
 - Fluxes of simultaneous co-located observations
 - Monthly means fluxes of the common tropical area

CERES/Terra & ScaRaB/MT

Represented period : 16 days Temporal colocation : 7'30"

CERES/AQUA & ScaRaB/MT

Represented period: 16 days

Temporal colocation: 7'30"

Conical aperture < 5°

ScaRaB calibration/validation status

Ground Characterization

- spectral characterization
- gain determination

The detector characterization has been done by The Technical team at LMD.

spatial response for each detector spectral response for each detector

Gain determination has been done by CNES
Integrating Sphere for the SW Channel
Thermal Vacuum for the TW channel

In-Flight Calibration

- Using the on-board calibration module CALM & the filter wheel.
- DCC method to validate SW radiances

Comparison with other ERB instruments

- CERES
- GERB

ScaRaB calibration/validation status

In-Flight Calibration

- CALM : Black Body Simulator in front of each channel C2-C3-C4 & lamp in front of C1
- The SW calibration now consists on direct intercomparisons of both SW and T channels over terrestrial scenes and on-board BBS by switching the silica filter.
- These inter-comparisons also allow to detect long term drift of the relative spectral responses of the SW and total channels in the SW domain

DCC : Geophysical cross-calibration method

- Allow to simplify the original calibration system in the SW domain using Deep Convective Cloud
- Analysis of very cold bright daytime cloud scenes over tropical convective regimes
- for which the TW signal is dominated by SW reflection
- and the residual LW component can be estimated independently from the IRW radiance (channel 4)

Strict coangularity criteria is desirable to improve radiances matching for highly anisotropic scene → inconvenient poorer statistics (especially for SW radiances)

Coangular criteria → Conical angle : 5° (see Clerbaux, 2009)

How to optimize the frequency of co-angular observations?

CERES others scanning modes, an issue ? (RAPS and FAPS)

How to choose the best angle for the FAPS mode

Red: CERES (Terra)
Black: ScaRaB (MT)

The CERES scan plane is rotated in azimuth by this ANGLE so the CERES scan plan will coincide with that of ScaRaB

Angles between ScaRaB scan & CERES scan (deg)

Statistics

± 7'30"

Co-located ScaRaB pixels number (51 days)	XT	RAPS	FAPS (98°)
Without any angular constraint	434,208	354,856	75,160
VZA ±5°	71,090	66,089	29,024
Conical aperture <5°	2,182	5,583	6,470

Co-located ScaRaB pixels number (7 days – days 18 to 24)	XT	RAPS	FAPS (98°)
Without any angular constraint	86,129	70,072	14,909
VZA ±5°	13,858	12,895	5,618
Conical aperture <5°	436	1,069	1,924

Cone < 5°

Conclusion

- Using the FAPS Scanning Mode increases the statistics by a factor 3 to 4 the co-located pixels between CERES and ScaRaB.
- Discussion with CERES Team of the opportunity to use FAPS mode.

Waiting for the data Launch date: October 12th

